DP-700T00: Microsoft Fabric Data Engineer

Microsoft Instructor-led Training

Course Description

This course covers methods and practices to implement data engineering solutions by using Microsoft Fabric. Students will learn how to design and develop effective data loading patterns, data architectures, and orchestration processes. Objectives for this course include ingesting and transforming data and securing, managing, and monitoring data engineering solutions. This course is designed for experienced data professionals skilled at data integration and orchestration, such as those with the DP-203: Azure Data Engineer certification.

Audience Profile

This audience for this course is data professionals with experience in data extraction, transformation, and loading. DP-700 is designed for professionals who need to create and deploy data engineering solutions using Microsoft Fabric for enterprise-scale data analytics. Learners should also have experience at manipulating and transforming data with one of the following programming languages: Structured Query Language (SQL), PySpark, or Kusto Query Language (KQL).

About this Course

  • Implement and manage an analytics solution (30–35%)

  • Ingest and transform data (30–35%)

  • Monitor and optimize an analytics solution (30–35%)

Implement and manage an analytics solution (30–35%)

Configure Microsoft Fabric workspace settings

  • Configure Spark workspace settings

  • Configure domain workspace settings

  • Configure OneLake workspace settings

  • Configure data workflow workspace settings

Implement lifecycle management in Fabric

  • Configure version control

  • Implement database projects

  • Create and configure deployment pipelines

Configure security and governance

  • Implement workspace-level access controls

  • Implement item-level access controls

  • Implement row-level, column-level, object-level, and file-level access controls

  • Implement dynamic data masking

  • Apply sensitivity labels to items

  • Endorse items

Orchestrate processes

  • Choose between a pipeline and a notebook

  • Design and implement schedules and event-based triggers

  • Implement orchestration patterns with notebooks and pipelines, including parameters and dynamic expressions

Ingest and transform data (30–35%)

Design and implement loading patterns

  • Design and implement full and incremental data loads

  • Prepare data for loading into a dimensional model

  • Design and implement a loading pattern for streaming data

Ingest and transform batch data

  • Choose an appropriate data store

  • Choose between dataflows, notebooks, and T-SQL for data transformation

  • Create and manage shortcuts to data

  • Implement mirroring

  • Ingest data by using pipelines

  • Transform data by using PySpark, SQL, and KQL

  • Denormalize data

  • Group and aggregate data

  • Handle duplicate, missing, and late-arriving data

Ingest and transform streaming data

  • Choose an appropriate streaming engine

  • Process data by using eventstreams

  • Process data by using Spark structured streaming

  • Process data by using KQL

  • Create windowing functions

Monitor and optimize an analytics solution (30–35%)

Monitor Fabric items

  • Monitor data ingestion

  • Monitor data transformation

  • Monitor semantic model refresh

  • Configure alerts

Identify and resolve errors

  • Identify and resolve pipeline errors

  • Identify and resolve dataflow errors

  • Identify and resolve notebook errors

  • Identify and resolve eventhouse errors

  • Identify and resolve eventstream errors

  • Identify and resolve T-SQL errors

Optimize performance

  • Optimize a lakehouse table

  • Optimize a pipeline

  • Optimize a data warehouse

  • Optimize eventstreams and eventhouses

  • Optimize Spark performance

  • Optimize query performance

 

4 Days

Intermediate

Need to Train a Team?

Contact us to schedule dedicated Azure Training for your team.